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The spectral method is shortly reviewed and then applied to equations of two- and 
three-dimensional guiding center plasmas. Some linear and nonlinear phenomena have 
been studied. It is shown that the spectral method can be used on a wide range of 
problems. 

I. INTRODUCTION 

The solution of three-dimensional plasma problems imposes severe demands 
on computer time and/or core memory. If N points are sufficient in one dimension 
(lD), roughly N3 points should be used in 3D. In addition, the number of variables, 
equations, and their complexity increases with more dimensions. It is therefore 
important to choose an economical representation of the solutions of the partial 
differential equations. 

We can represent a solution on a mesh or by the coefficients of a set of orthogonal 
functions. We assume that the function to be represented is “smooth,” i.e., has n 
continuous derivatives, IZ > 1. Then it follows that any of the N points on a grid 
must be in the neighborhood of the adjacent points. On the other hand, the coeffi- 
cients of the orthogonal functions can be choosen independently of each other, 
except that for large order the coefficients have to tend to zero. It thus appears 
that N coefficients of orthogonal functions convey more information than N points 
on a grid. 

For our case the natural choice is Fourier modes. An additional advantage is 
that derivatives and integrals of any order can be calculated “exactly” for a given 
representation. For nonlinear problems products have to be calculated. In Fourier 
space this corresponds to convolution sums. Transforming from Fourier space 
into configuration space and performing the multiplication there turns out to be 
faster than evaluating the convolution sum. When transforming back into Fourier 
space, aliasing has to be taken into account. Recent developments, the fast Fourier 
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transform (FFT) [l] and dealiasing procedures [2, 31 make it competitive with 
the difference methods under certain conditions. 

In the first section we describe in detail the basic features and techniques of the 
spectral method. In the second section we illustrate the method by dealing with 
linear, quasilinear, and nonlinear effects occurring in 2D and 3D guiding center 
plasmas. In the last section we discuss some problems which can be solved by 
this method. 

II. THE SPECTRAL METHOD 

Let a set of grid points be defined by 

Xj = 2rrj/N, (1) 

where j = 0, 1, N - 1, and N is an integer power of 2. Let Zi be the value of the 
function Z(X) at & , .Zj = Z(&). Then the discrete Fourier transform is 

Zj = 1 z(k) exp(ikXJ 
IklGNP 

(j = 0, l,..., N - l), (2) 

and the inverse transform is given by 

N-l 

z(k) = l/N c Zjexp(-&X3) (I k I B GW. 
j=O 

Differentiating we get 

dzi C ikz(k) exp(ik&). 
dx - lkl<N/Z 

(4) 
\ 

(3) 

This relation is used whenever spatial differentiation is involved. 
Assume the set of partial differential equations to be given by 

(d/dG F(X) = WV% tl, (5) 

where G is a differential operator in the space coordinates. The functions F(X) 
are bounded and periodic in the volume L 3. The general solution can then be 
written as 

F(X, t) = c f&f) exp(ik, * X), 
--m<lml<m 

k, = g * (ml, m2, m3) 

ml T m2, m3 = 0, &l,... . (6) 
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In the spectral method we assume that there is a finite N for which 

f?(X, t) = 1 f&t) exp(ik, . X) (7) 
Iml<NP 

is a good approximation to F(X) of Eq. (6). Using the discrete Fourier transform (2) 
and (3), all spatial differentiations are done by using (4). 

At this point we would like to compare the discrete with the continuous Fourier 
transforms. The orthogonality condition of the continuous case is 

1 L 
zo f 

exp[i(k, - km> Xl dx = hm, (8) 

where S,, is the Dirac delta function. The orthogonality condition for the discrete 
case is 

N-l 

jz ewP(kn - km) &I = ~Lnav, a = 0, 1, 2 ,... . (9) 

We obtain, for the continuous case, 

1 L 
a, = - s L 0 

exp( - ik,X) F(X,) dX. (10) 

a, is the exact amplitude of the nth Fourier mode. For the discrete case we get 

bn = -& 7 exp(--ik,X,) .8(x,), 
1=0 

where, as a result of the difference between the right sides of Eqs. (8) and (9), 
we find 

b, = a, + f an+aN. (12) 
a=-co 

a#0 

The sum in the right-hand side of (12) is called the “aliasing term.” When aliasing 
terms appear in the Fourier representation, ik * b(k) is no longer the amplitude 
of the derivative of the kth mode of F(X). Inserting Eq. (4) into Eq. (5) without 
taking into account the aliasing terms often results (but not always) in numerical 
instability, the so called “aliasing instability.” The basic assumptions of the 
spectral method, Eqs. (7) and (4), can only be fulfilled as long as the aliasing term 
is zero or is explicitly removed from the calculated amplitude. 
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If aliasing terms are not present at the initial steps of the calculation, they may 
appear later on due to nonlinear terms. For example, let 

Uj = c U(k,) exp(ik,X&, 
I”l<NP 

(13) 
Vj = c V(k,) exp(ik,Xj) j = 0, l)...) N - 1. 

InlO’/ 

We assume that Uj and Vj do not contain aliasing terms; however the product 

zj = ujvj (14) 

contains modes in the range / n / < N, and aliasing terms might falsify the Fourier 
amplitudes of 2. 

A. Eliminating Aliasing in a One-Dimensional Case 

If we want to represent K Fourier modes of a solution of a nonlinear differential 
equation, it should be represented on a 4K mesh instead of on the minimal 2K 
mesh. Then the product 2 = U . V of (13) and (14) is represented on this mesh 
in a way that its 2K modes have the exact nonaliased amplitudes. At this step 
all z(k) for which 1 k, ] > 2K should be replaced by zero. Thus these modes will 
not alias the quantities U and V later on. This method can be used for more 
dimensions, but there are more economic ways to do it. 

B. Eliminating Aliasing in Many Dimensions 

In the following we give some results obtained by Orszag and Patterson [2, 31. 
For further details the reader is referred to the references. 

Let 

U(J) = c Uor) exp[ik - W)l, 
IlklICK 

V(J) = 2 V(k) exp[ik . X(j)], 
IIkII<K 

where K = N/2, X = (r/K)(jl ,j2 , j,>, and jr = 0, l,..., N - 1, 1 = 1, 2, 3. 
We assume that the only k’s in Eq. (15) for which the amplitude does not vanish 

are those with 

k12 + kZ2 + kS2 < (8/9) K2. (16) 

All other modes are eliminated. Using these U(k) and V(k), we calculate U and V 
at a shifted grid 
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u,(J) = c W ewi?k . xdj)l, 
/Ikll<K 

V,(J) = c V(k) exp[ik . X,(j)]. 
Ilkll<K 

We calculate the products 

Z(J) = U(J) * V(J), 

Z,(J) = U,(J) - us”,. 

(18) 

(19) 

Then we Fourier transform the products, using Eq. (3), and obtain the amplitude 
z(k) and z,(k), respectively. 

Compute 

Z(k) = Q[z(k) + exp(--ik - e/N) * z,(k)], (20) 

(where e = (1, 1, 1)) and eliminate all modes for which (16) does not hold. Then 
these Z(k) are the desired nonaliased Fourier modes of the product Z = U . K 

This dealiasing procedure is somewhat lengthy; however, it enables us to use 
the spectral method which is very economical in computer core. Thus we can 
easily solve three-dimensional problems. This will be demonstrated in the following 
section. 

III. APPLICATION TO GUIDING CENTER PLASMAS 

In this section we solve some problems of 2D and 3D guiding center plasma 
using the spectral method. Some results are new and some are already known and 
have been included here to illustrate the method. The 3D equations of an electro- 
static guiding center plasma are 

anJat = -a * vni - (a/az)(v$li), 

&,/at = -a . Vn, - (a/aZ)(V,n,), 

aVi/at = -a - Vni - v,(a/aZ) Yi + (e/m+) Ez , 
(21) 

aV,/at = -a . VV, - V,(a/aZ) V, - (l/m,n,)(aP,/aZ) - (e/m,) Ez , 

-vzqJ = @Ii - n,) * 47r1, 

a = c(E x B)/P, E = -VT. 
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Here ni , n, , Vi , and V, are the densities and the average velocities in the Z direc- 
tion of the ions and electrons, respectively. The direction of the uniform magnetic 
field B is along the Z axis. mi and m, are the ion and electron masses, and P, is 
the electron pressure. Equations (21) are the familiar two-fluids equations where 
the velocities perpendicular to B have been replaced by the drift velocity a. The 
ions are assumed to be cold. Further details about these equations and the assump- 
tions behind them may be found elsewhere [4]. We assume periodic boundary 
conditions in all directions. 

For the 2D case these equations reduce to 

(aqat) + a - Vr = 0, 

-v2g, = r, 
(22) 

where J’ = n, - n, . The 2D equations are equivalent to the 2D hydrodynamic 
equations of an inviscid incompressible fluid which have been the object of 
intensive investigations for a long time [5]. 

The initial values of ni , n, , vi , u, of Eqs. (21) are specified on an N x N x N 
grid, where Nis an integer power of 2. To calculate spatial derivatives we transform 
from the mesh to k space and employ Eq. (4). 

Products (like Vini or a VnJ have to be computed using the dealiasing procedure 
described in Section II. This way the right-hand sides of the first four equations 
of system (21) are calculated. 

Poisson’s equation in (21) is also solved with the aid of the FFT and periodic 
boundary conditions. The transformed potential is then given by 

The chosen boundary conditions are the most convenient ones for our method. 
Other conditions (e.g. C,I = 0 at metal walls) can also be incorporated but require 
further analysis. The algorithm to integrate the first four equations of (21) consists 
of a second-order predictor-corrector scheme to advance the system in time: 

Fn+lj2(X) = F”(X) + @it - GF”(X)], 
(23) 

F”+‘(X) = F”(X) + G[F”f’/“(X)], 

where F and G are defined by Eqs. (5) and (21), and n labels the time step. We 
repeat that the difference scheme is in time only because the spatial dependence 
in (21) has already been taken care of by the spectral method. 

The two-dimensional algorithm for Eq. (22) is similar (and simpler) than the 
one described above. 
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A. Results of Computer Experiments 

1. 20 Linear and Quasilinear Phenomena 

We first apply the spectral method to study the stability of 2D nonhomogeneous 
plasma. As a stationary solution we take I’,, = cos(k,x) and perturb it by 
I’, = 6 cos(Ic,y). Some results for different k, , k, , and 6 values are plotted in 
Fig. 1, which shows the time evolution of the energy of mode r, . We see clearly 

FIG. 1. The energy of the perturbation as a function of time for four experiments. The initial 
states were: 

r, = cos 5x + 0.02 cos y; r, = cos 5x + 0.02 cos 4y; 
r, = cos 5x + 0.01 cos 4y; r, = cos 4y + 0.02 cos 5x. 

that for & = 4, k, = 5 we have a stable case, while the other cases are unstable. 
The numerical growth rates were found to be in good agreement with those 
obtained from Shoucri [6]. 

Figure 2 shows how the linear instability is saturated by nonlinear mode 
coupling. For 9 < T -=c 15 the steady state amplitude of mode (5,O) begins to 
decay, while the growth rate of modes (0,4) and (5,4) is not changed. This we 
call the quasilinear regime. The results were obtained by taking different length 
scales in the x and y directions on a 4 x 4 grid. d t = 1. 

2. 30 Linear and Quasilinear Phenomena 

We now apply the spectral method to a 3D inhomogeneous plasma. The 
stationary state r,, = cos(k,,x) is perturbed by r, = 6 cos(k,y + kg). The 
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FIG. 2. The energy of the modes (5,0), (0, 4), and (5, 4) as a function of time for the initial 
conditions r = cos 5x + 0.02 sin 4~. 

FIG. 3. The energy of the modes (5,0,0), (0,4,0.002), and (5,4,0.002) as a function of time 
for the initial conditions Ni = 20 + cos 5x + 0.02 cos (4~ + 0.002~). 

results are shown in Fig. 3. Here 6 = 0.02, k, = 5, k, = 4, k, = 0.002, and 
me/mi = 2000. 

The linear, quasilinear, and nonlinear stages are similar to those of the 2D case 
described above. The linear growth rate of the mode k, = 5, k, = 4, k, = 0.002 
is 0.15. In this experiment a 4 x 4 x 4 mesh was used. d t = 1. 
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3. 20 Nonlinear Phenomena 

The 2D systems of Eq. (22) have the property that initially present vortices 
tend to coalesce by nonlinear interactions. Thus the final state often consists of 
fewer vortices than the initial state [7, 8, 91. This effect is demonstrated in Fig. 4. 
A system with ten vortices for t = 0 develops to a state of only two main vortices. 
This run used a 16 x 16 mesh. 

i ~:‘3C iT2LC 

FIG. 4. Equipotentials (or stream lines) for four different times. Vortices marked (+) circulate 
in opposite sense to those marked (-). It is seen that larger vortices are created in time. Here 
T = number of time steps, dt = 0.1. 

B. Checking the Code 

In the 2D case there are two invariants: the total energy and the vorticity. The 
energy is given by 

where 

C WK(K) = cl = const, (24) 
K 

w,(K)= 1 irvI” 
IIJI=K 

and the vorticity by 

; W&K) * K2 = c2 = const. (25) 

These two quantities were conserved up to the fifth significant digit for sufficiently 
small time steps (At w 0.05). 

Another check, which is very simple and applicable to any spectral solution, 
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is generation of eigenmodes and following their propagation. Linearizing Eq. (22) 
and taking 

Ni(r) = Ni, + &Vi co@ . r), 

N,(r) = N,,, + SN, cos(k . r), 
(26) 

V,(r) = SVi cos(k * r), 

Ve(r) = SF’, cos(k . r), 

where Ni,, = N,, = N = const, we get the known dispersion relation. 

k,2 + k,2 + kz2 = (k,2N/w2) + [P-%,2N/(W2 - Wk2)1~ (27) 

where p-l = mi/me . For each k there are two frequencies (corresponding to 
plasma and ion sound waves). By chasing 

SVi = o GNJk,N, 

SNO = SNi - w(k,’ + kg2 + k,2) 8Vilkz 3 

we have the initial conditions that generate oscillations with only one frequency w, 
i.e., we generated an eigenmode. It is very easy to compare the oscillation in that 
system with the calculated w, and a good agreement was obtained. 

IV. SUMMARY AND CONCLUSIONS 

We have seen how the spectral method is used to solve 2D and 3D plasma 
problems. This method, which is basically a many-modes interaction calculation, 
is based on representing the modes by their values at grid points rather than 
dealing explicitly with their amplitudes and phases. In many cases the “physics 
of the problem” is contained in a relatively small number of modes. This can 
sometimes make the spectral method more economical than difference schemes. 
However, this point has to be checked for each problem separately. The spectral 
method is especially effective for linear and linearized problems, and for any 
problem with rapidly converging Fourier series. It appears that problems with 
discontinuities cannot be economically treated by the spectral method. The 
dealiasing method can be extended to interaction terms more complicated than 
the product of two functions. 
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